Soy protein concentrate mitigates markers of colonic inflammation and loss of gut barrier function in vitro and in vivo

Zachary T. Bitzer, Amy L. Wopperer, Benjamin J. Chrisfield, Ling Tao, Timothy K. Cooper, Jairam Vanamala, Ryan J. Elias, John E. Hayes, Joshua D. Lambert

Abstract

Whereas a number of studies have examined the effects of soy isoflavones and tocopherols on colonic inflammation, few have examined soy protein. We determined the radical scavenging and cytoprotective effects of soy protein concentrate (SPC) in vitro and its anti-inflammatory effects in dextran sulfate sodium (DSS)-treated mice. Cotreatment with SPC protected Caco-2 human colon cells from H$_2$O$_2$-induced cell death and mitigated intracellular oxidative stress. Treatment of differentiated Caco-2 cells with SPC blunted DSS-induced increases in monolayer permeability. Pepsin/pancreatin-digested SPC had reduced radical scavenging activity, but retained the monolayer protective effects of SPC. In vivo, 1.5% DSS caused body weight loss, colon shortening, and splenomegaly in CF-1 mice. Co-treatment with 12% SPC mitigated DSS-induced body weight loss and splenomegaly. DSS increased colonic interleukin (IL)-1β, IL-6, and monocyte chemotactic protein-1 expression. The levels of these markers were significantly lower in mice co-treated with SPC. SPC prevented DSS-mediated reductions in colonic glucagon-like peptide 2 levels, suggesting that SPC can prevent loss of gut barrier function, but no significant effect on claudin 1 and occludin mRNA levels was observed. SPC-treated mice had lower colonic mRNA expression of toll-like receptor 4 and nucleotide-binding oligomerization domain-containing protein-like receptor family, pyrin domain containing protein 3 (NLRP3), and lower caspase-1 enzyme activity than DSS-treated mice. In summary, SPC exerted antioxidant and cytoprotective effects in vitro and moderated the severity of DSS-induced inflammation and loss of gut barrier function in vivo. These effects appear to be mediated in part through reduced NLRP3 expression and caspase 1 activity.

© 2016 Published by Elsevier Inc.

Keywords: Glycine max; Soy protein; Dextran sulfate sodium; Colitis; Gastrointestinal permeability; Inflammasome

1. Introduction

Inflammatory bowel diseases (IBD), including ulcerative colitis and Crohn’s disease, are characterized by either continuous or periodic inflammation of the colon and represent a significant risk factor for colon cancer [1]. IBD affects nearly 4 million people worldwide with an economic impact of US$19–30 billion annually in the United States alone [2,3].

IBD is characterized by increased colonic oxidative stress, inflammation, and loss of gut barrier function [4]. Reactive oxygen species (ROS) and inflammatory cytokines, including interleukin (IL)-1β, are released by inflamed epithelial cells and resident immune cells. IL-1β is initially produced as an inactive precursor, which is enzymatically converted to its mature form by caspase-1. Caspase-1, itself, is activated by the proteolytic action of a multiprotein complex known as inflammasome [5]. The nucleotide-binding oligomerization...
domain-containing protein-like receptor family, pyrin domain containing protein 3 (NLRP3) inflammasome is a complex composed of NLRP3 and apoptosis-associated speck-like (ASC) protein. The NLRP3 inflammasome forms as a result of ROS-mediated release of thioredoxin interacting protein (TXNIP) by thioredoxin, as well as through toll-like receptor (TLR)-4/nuclear factor (NF)κB-induced expression of NLRP3 [6]. Recent studies have demonstrated that blocking ROS generation leads to decreased NLRP3 inflammasome activity and subsequently to decreased IL-1β maturation and inflammation [7].

Colonic inflammation can lead to loss of gut barrier function and increased gut permeability by causing the reorganization and down-regulation of the tight junction proteins that join adjacent colonic epithelial cells [8,9]. This decrease in barrier function allows bulky or highly charged molecules, including pathogen-associated molecular patterns into the submucosa and systemic circulation perpetuating the inflammatory condition, increasing mucosal damage, and prolonging the colitic event. Interruption of this cycle can result in resolution of inflammation.

Soybeans (Glycine max L., Fabaceae) have been widely studied for their cancer preventive effects [10–14]. Epidemiological studies have suggested that soy consumption may reduce the risk of colon cancer; however, laboratory studies with purified soy components have yielded mixed results [15,16]. For example, Rao et al., have reported that dietary supplementation with genistein enhanced colonic oxidative stress and colon carcinogenesis in azoxymethane-treated F344 rats [17]. We have previously reported that genistein in combination with the green tea polyphenol, (−)-epigallocatechin-3-gallate, enhanced tumorigenesis in the ApoMin/− mouse [18].

Soy proteins and soy-derived peptides have been found to have antioxidant activity in cell-free models, and soy-derived peptides, such as lunasin, have also been found to have anti-inflammatory activity in macrophage cells in culture [19–22]. One study found that dietary supplementation of dextran sulfate sodium (DSS)-treated mice with 20% soy protein significantly reduced colon shortening, colonic inflammation scores, and reduced colonic mRNA expression of tumor necrosis factor α, however, the underlying mechanism of action was not explored [23]. More recently, studies in piglets and Bab/c mice with DSS-induced colitis found that soy derived di- and tripeptides, in particular the tripeptide, Val-Trp-Tyr, decreased inflammatory cytokine production as compared to the DSS-only control [24,25]. The relative contribution of this peptide to the overall activity of soy protein was not assessed.

Although recent studies on the effects of soy protein in animal models of IBD are promising, many questions remain including the identity of the underlying molecular mechanism of anti-inflammatory activity. In the current study, we examined the ability of an isofoflavone-free soy protein concentrate (SPC) to prevent inflammation and loss of gut barrier function both in vitro and in vivo. We further investigated the impact of SPC on markers of the pathway for IL-1β expression and maturation.

2. Materials and methods

2.1. Materials

SPC (Arcon SF #066–408) was a gift from the Archer Daniels Midland Company (Decatur, IL, USA). The composition of SPC is shown in Supplemental Table 1. 2.2-azobis(2-methylpropionamide) dihydrochloride (AAPH), N-ethylmaleimide, fluorescein isothiocyanate-conjugated dextran (FITC-D, average MW 4000), pancreatin, and pepsin, were purchased from Sigma-Aldrich (St. Louis, MO). 6-Carboxy-2′,7′-dichlorodihydrofluorescein diacetate, di(ace)toxymethyl ester (DCHDFDA) was purchased from Invitrogen (Carlsbad, CA, USA). DSS (average MW=40,000) was purchased from MP Biomedical, LLC (Solon, OH, USA). All other chemicals used were of the highest grade commercially available.

2.2. Solubilization and fractionation of SPC

SPC was solubilized in water as follows for use in the oxygen radical absorbance capacity (ORAC) assay and cell culture assays. SPC was suspended in deionized water (1:20 w/v) and the pH was adjusted to 11 using NaOH (1 M) under constant agitation to increase solubility. After 2 h, the pH was slowly adjusted back to 7.4 using HCl (1 M). The solution was centrifuged at 3200×g for 20 min at 20°C. The resulting supernatant was lyophilized and stored at −80°C until use. To produce a high-molecular-weight (MW)-fraction (SPC-H, MW>10 kDa) and a low-molecular-weight fraction (SPC-L, MW<10 kDa), solubilized SPC was dissolved in deionized water (1:20 w/v) and spun through a 10 kDa molecular weight cutoff centrifugal filter Millipore (Billerica, MA) according to the manufacturer’s instructions. The flow-through was collected as SPC-L, lyophilized, and stored at −80°C until use. Protein content was determined in SPC, SPC-L, and SPC-H using the Bradford assay.

2.3. Soy protein concentrate hydrolysis

The enzymatic hydrolysis of SPC was accomplished using a previously published method [26]. In brief, SPC was suspended in deionized water (1:20 w/v) and heated to 80°C for 5 min to reduce any potential bacteria population as well as to denature lipoperoxidase. The pH was reduced to pH 2 using HCl, pepsin was added (1:100 w/w, enzyme/SPC), and the solution was incubated at 37°C for 3 h. The pH was then increased to 7.5 using NaOH, pancreatin was added (1:20 w/w, enzyme/SPC) and the mixture was then incubated at 37°C for 3 h. Hydrolysis was stopped by heating to 75°C for 20 min. The hydrolysate (HSPC) was centrifuged at 25,000×g for 15 min, and the resulting supernatant was lyophilized and stored at −80°C.

2.4. Thiol analysis, oxidation, and thiol blocking of SPC and HSPC

Free thiol groups in SPC were blocked using N-ethylmaleimide (NEM) as previously described. [27] In brief, SPC and SHP were dissolved in phosphate buffer (0.1 mM, pH 8) at final concentration of 25 mg/mL and reacted with NEM (3.45 mmol/g of protein) for 15 min at 25°C. SPC was oxidized in an analogous manner using H2O2 (10 mM of g of protein). Excess NEM and H2O2 were removed by dialysis (500 Da cut-off membrane) (500 Da cut-off membrane) and combined with fluorescent (final concentration=8.6 mM) in a 96-well black opaque plate. After incubation for 30 min at 37°C, fluorescence was measured (λEx=485 nm, λEm=520 nm). AAPH (final concentration=30 mM) or phosphate buffer was then added and fluorescence was measured every 90 s for 90 min. Fluorescence values were normalized to time 0 and the area under the curve determined for each treatment and converted to Trolox equivalents.

2.5. Antioxidant capacity of SPC preparations

The antioxidant capacity of the SPC preparations was determined using the oxygen radical absorbance capacity (ORAC) assay. In brief, SPC and modified SPC samples (see Section 2.4) were dissolved in phosphate buffer (10 mM, pH 7.4) to a final concentration of 100 μg/mL and combined with fluorescein (final concentration=8.6 mM) in a 96-well plate and allowed to attach for 24 h before treatment. For co-treatment experiments, cells were simultaneously exposed to 50 μM H2O2 and SPC (0–500 μg/mL) in phosphate buffered saline (PBS) for 60 min at 37°C. For the pre-treatment experiment, cells were incubated with SPC for 30 min at 37°C. The cells were then washed with PBS and treated with 50 μM H2O2 for 60 min at 37°C. After each experiment, cell viability was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and is expressed relative to control cells treated with neither H2O2 nor SPC.

2.6. Cell culture and cell viability

Caco-2 cells (American Type Culture Collection, Manassas, VA, USA) were maintained in sub-confluence in Dulbecco’s Modification of Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum, penicillin (100 IU/mL); and streptomycin (100 μg/mL) at 37°C under 5% CO2 atmosphere. For cell viability assays, Caco-2 cells were seeded to a 96-well plate (5×103 cells/well) and allowed to attach for 24 h before treatment. For co-treatment experiments, cells were simultaneously exposed to 50 μM H2O2 and SPC (0–500 μg/mL) in phosphate buffered saline (PBS) for 60 min at 37°C. For the pre-treatment experiment, cells were incubated with SPC for 30 min at 37°C. The cells were then washed with PBS and treated with 50 μM H2O2 for 60 min at 37°C. After each experiment, cell viability was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and is expressed relative to control cells treated with neither H2O2 nor SPC.

2.7. Effect of SPC on intracellular ROS

Caco-2 cells were seeded in Petri dishes (1.5×104 cells/cm2). After 48 h, cells were exposed to 0 or 50 μM H2O2 in PBS for 60 min at 37°C in the presence or absence of 1.0 mg/mL SPC. Cells were washed with DMEM and incubated with 10 μM DCHDFDA at 37°C for 30 min, washed twice with PBS, and once with DMEM. Fluorescence was observed with an Olympus BX-51 Fluorescence Microscope (λEx=490 nm, λEm=525 nm).
2.8. Caco-2 monolayer permeability

Caco-2 cells were seeded in polycarbonate transwell inserts (0.33 cm² area and 0.4 μm pore size, Corning Life Sciences, Tewksbury, MA, USA) and allowed to reach confluence and differentiate for 21 d. Based on previous studies, only monolayers with a transepithelial electrical resistance of 500–600 Ω·cm² were used [29]. The monolayers were treated with SPC samples (0–100 μg/mL) for 2 h prior to addition of 2% DSS to the media. After addition of DSS, cells were co-incubated for an additional 48 h. The paracellular permeability was observed by measuring the apical to basolateral flux of FITC-D as described previously using a Fluoroskan Ascent FL fluorescence plate reader (Thermo Scientific, Waltham, MA, USA) [30].

2.9. Animals and treatment

All animal experiments were approved by the Institutional Animal Care and Use Committee at The Pennsylvania State University (IACUC #29544). Male, CF-1 mice (Charles River Laboratory, Wilmington, MA, 5 weeks old) were randomized into 4 treatment groups (10 mice per treatment) and then housed 5 per cage in shoebox cages on corn cob bedding and maintained on a 12 h light/dark schedule with ad libitum access to food and water. Mice were allowed to acclimate for 7 d prior to the start of experiments. Experimental diets (Table 1) were prepared by Research Diets, Inc. (New Brunswick, NJ, USA). In order to maintain equivalency, macronutrient and micro-nutrient ingredient levels in the basal diet were reduced and replaced with the components found in the SPC powder (i.e., casein in AIN93G was replaced with increasing amounts of soy protein; cellulose in AIN93G was replaced with increasing amounts of soy fiber, etc.).

2.10. DSS-induced colitis

Mice were randomized based on weight into control (water and AIN93G diet), DSS (1.5% DSS in drinking fluid and AIN93G), DS6 (1.5% DSS and 6% dietary SPC), and DS12 (1.5% DSS and 12% dietary SPC). Mice were treated with DSS and experimental diets for 7 d, after which DSS was replaced with water and the mice were maintained for three additional days. Body weight was measured daily. Upon euthanasia, blood was collected from the tailvein and differentiated for 21 d. Based on previous studies, only monolayers with a transepithelial electrical resistance of 500–600 Ω·cm² were used [29].

Table 1 Composition of Experimental Mouse Diets *

<table>
<thead>
<tr>
<th>Ingredient (g)</th>
<th>Control</th>
<th>6% SPC</th>
<th>12% SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caein</td>
<td>200</td>
<td>158</td>
<td>116</td>
</tr>
<tr>
<td>t-Cystine</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Corn Starch</td>
<td>397.5</td>
<td>396.3</td>
<td>395.2</td>
</tr>
<tr>
<td>Maltodextrin 10</td>
<td>132</td>
<td>132</td>
<td>132</td>
</tr>
<tr>
<td>Sucrose</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Cellulose BW200</td>
<td>50</td>
<td>39.8</td>
<td>29.6</td>
</tr>
<tr>
<td>Soybean Oil</td>
<td>70</td>
<td>70</td>
<td>20</td>
</tr>
<tr>
<td>t-Butylhydroquinone</td>
<td>0.014</td>
<td>0.014</td>
<td>0.014</td>
</tr>
<tr>
<td>Mineral Mix (S10022G)</td>
<td>35</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mineral Mix (S10042) (100X)</td>
<td>0.35</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Calcium Phosphate, Dibasic (29.5% Ca, 22.8% P)</td>
<td>6</td>
<td>5.2</td>
<td>5.2</td>
</tr>
<tr>
<td>Calcium Carbonate (40% Ca)</td>
<td>7.5</td>
<td>7.8</td>
<td>7.8</td>
</tr>
<tr>
<td>Sodium Chloride (39.3% Na)</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
</tr>
<tr>
<td>Magnesium Oxide (60.3% Mg)</td>
<td>0.64</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>Ferric Citrate</td>
<td>0.18</td>
<td>0.18</td>
<td>0.145</td>
</tr>
<tr>
<td>Zinc Carbonate</td>
<td>0.058</td>
<td>0.058</td>
<td>0.058</td>
</tr>
<tr>
<td>Vitamin Mix (V10037G)</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Choline Bitartrate</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Soy Protein Concentrate</td>
<td>0</td>
<td>60</td>
<td>120</td>
</tr>
<tr>
<td>Total</td>
<td>1000</td>
<td>989.492</td>
<td>984.367</td>
</tr>
</tbody>
</table>

* Differences in cellulose and mineral mixes in the diets are a result of the mineral composition and ash content in the SPC received from the supplier.

** Composed of calcium phosphate, magnesium oxide, potassium citrate, potassium sulfate, sodium chloride, potassium sulfate, cupric carbonate, potassium iodate, ferric citrate, manganese carbonate, sodium selenite, zinc carbonate and sucrose.

*** Composed of Vitamin A, Vitamin D3, Vitamin E acetate, menadione sodium bisulfate, biotin, cyanocobalamin, folic acid, nicotinic acid, calcium pantothenate, pyridoxine-HCl, riboflavin, thiamin HCl and sucrose.

2.11. Biochemical analysis

Colon tissues were homogenized in T-PER reagent (Thermo Scientific, Waltham, MA) supplemented with homodihydroxyacetic acid (10 μM), indomethacin (10 μM), protease inhibitor (1:100), and phosphatase inhibitors (1:100) using a Bullet Blender (Next Advance, Averill Park, NY, USA) with 0.2 mm stainless steel beads. The resulting homogenates were centrifuged at 16,160 g at 4°C for 15 min and supernatant collected for analysis. Protein levels in the supernatant were determined using the Bradford reagent (Sigma-Aldrich Chemical, St. Louis, MO, USA) and the levels of IL-6, IL-1β, and monocyte chemotactic protein (MCP)-1 were determined using enzyme-linked immunosorbent assays (ELISA) (R&D Systems, Minneapolis, MN, USA). Levels of glucagon-like peptide 2 (GLP-2) were determined using an ELISA from MyBioSource, Inc. (San Diego, CA, USA). Caspase-1 activity was measured using a caspase-1 activity assay kit from the manufacturer’s protocol (Abcam, Cambridge, MA, USA).

2.12. Quantitative reverse-transcriptase (q)PCR

Total RNA was isolated and DNA contamination was removed from homogenized colon samples using the RNeasy Mini Kit (Qiagen, Valencia, CA, USA). Total RNA was assessed and quantified with a Nanodrop 2000 spectrophotometer. The RNA was reverse-transcribed to cDNA using the RT² HT First Strand Kit (SA Biosciences, Valencia, CA, USA). Real-time PCR was performed using an Applied Biosystems 7900HT Fast Real-Time PCR System (San Francisco, CA, USA) using primers (The Pennsylvania State University Genomics Core Facility, University Park, PA, USA) or TaqMan® hydrolysis probes (Life Technologies, Inc., Grand Island, NY, USA) (Supplemental Tables 2 and 3). The data was analyzed with Sequence Detector Software (Applied Biosystems). Relative gene expression was determined using the 2−ΔΔCT method, where ΔΔCT = C(T target) − C(T reference) and GAPDH was used as the reference gene. ΔΔCT values were used for statistical analysis and 2−ΔΔCT values were used for graphical representation.

2.13. Data analysis

Statistical analysis was performed using SAS 9.4 (Cary, NC, USA) and graphs were prepared using GraphPad Prism (San Diego, CA, USA). All data are presented as the mean ± standard error of the mean (SEM). The Brown-Forsythe Test was used to determine if data from different treatment groups had equal variance. Cytoprotective effects in vitro were analyzed by two-way ANOVA with Bonferroni’s post-test with treatment protocol (co-treatment vs. pre-treatment) and the concentrations of SPC as the independent variables. In vitro changes in permeability and radical scavenging activity were analyzed by one-way ANOVA with Tukey’s post-test or Student’s t-test as appropriate. Changes in body weight were analyzed by two-way ANOVA with Bonferroni’s post-test with time and treatment as independent variables. For data with equal variance, changes in in vivo markers of inflammation and gastrointestinal permeability were analyzed by one-way ANOVA with Tukey’s post-test. For data with unequal variance, Welch’s ANOVA with Dunnett’s post-test was used for statistical analysis. Comparisons were made to the DSS-treated control mice.

3. Results

3.1. In vitro cytoprotective and antioxidant activity

The in vitro peroxyl radical scavenging activity of SPC was determined using the ORAC assay (Fig. 1). The activity of native SPC was compared to SPC that had been fractionated based on molecular weight (SPC-H and SPC-L), hydrolyzed by pepsin/pancreatin (HSPC), and pre-oxidized (SPC-H2O2 and HSPC-H2O2) or treated to block thiol groups (SPC-NEM and HSPC-NEM). We found that unmodified SPC had the greatest radical scavenging activity (Fig. 1). Fractionation revealed that the radical scavenging activity of the SPC-H fraction was significantly higher than that of the SPC-L fraction. There was no significant difference in free thiol levels in SPC-H and SPC-L, however the levels of thiols in the SPC-L were significantly lower (Fig. 1). Hydrolysis of SPC with pepsin/pancreatin significantly lowered both radical scavenging activity and free thiol levels (Fig. 1). Blocking free thiols by pre-treatment of SPC or HSPC with NEM or pre-oxidation of SPC or HSPC with H2O2 significantly reduced the radical scavenging activity of SPC but not HSPC (Fig. 1). Treating Caco-2 cells with 50 μM H2O2 reduced cell viability by 50% compared to untreated control cells (Fig. 1, dashed line indicates viability of untreated cells). Co-treatment, but not pre-treatment, with SPC significantly prevented H2O2-induced loss of cell viability (Fig. 1). Significant effects of SPC concentration (P<0.01), treatment protocol (P<0.05), and the interaction between the two factors (P<0.05) on cell viability was observed. H2O2 treatment...
Fig. 1. Radical scavenging, cytoprotective, and permeability effects of SPC in vitro. The radical scavenging effects of SPC and its various modifications were determined chemically using the ORAC assay. Thiol groups as measured by Elman’s reagent. The protective effects of pre-incubation and co-incubation with SPC on H$_2$O$_2$-induced loss of Caco-2 cell viability were assessed by the MTT assay. The dashed line at 100% viability indicates the viability of cells treated with neither H$_2$O$_2$ nor SPC. The effect of SPC on intracellular ROS was determined by measuring DCDHFDA fluorescence following treatment of Caco-2 cells with H$_2$O$_2$ alone or in combination with SPC. All values represent the means±S.E.M. and an n=10 for each group. Different letters denote P<0.05 using one-way ANOVA with a Tukey’s multiple comparison post-test. Asterisks indicate P<0.05 by Student’s t-test. Cytoprotective data were analyzed by two-way ANOVA with Bonferroni’s post-test. Different superscript letters indicate statistically significant differences between concentrations of SPC and between treatment schemes. “SPC-NEM”, thiol blocked SPC; “HSPC-NEM”, thiol blocked HSPC; “SPC-H$_2$O$_2$”, pre-oxidized SPC; and “HSPC-H$_2$O$_2$”, pre-oxidized HSPC.

Fig. 2. Effect of SPC on DSS-induced permeability of Caco-2 human colonocyte monolayers. We examined the ability of (a) SPC and HSPC, (b) fractionated SPC, and oxidized or thiol blocked (c) SPC and (d) HSPC to protect differentiated Caco-2 cell monolayers from DSS-induced increases in permeability. Monolayer permeability was determined by measuring the apical to basolateral flux of FITC-D after 48 h incubation with 2% DSS and soy treatment. All experiments were repeated at least twice. All data represent the mean±S.E.M. Different letters denote P<0.05 using one-way ANOVA with a Tukey’s Multiple Comparison post-test. “SPC-NEM”, thiol blocked SPC; “HSPC-NEM”, thiol blocked HSPC; “SPC-H$_2$O$_2$”, pre-oxidized SPC; and “HSPC-H$_2$O$_2$”, pre-oxidized HSPC.
3.2. In vitro cell permeability effects

Treatment of differentiated Caco-2 cell monolayers with DSS caused a significant increase in monolayer permeability as measured by FITC-D flux (Fig. 2). SPC and HSPC mitigated DSS-induced increases in the apical to basolateral flux of the FITC-D across the differentiated Caco-2 cell monolayer by 54–65% (Fig. 2a). Fractionation showed that both SPC-H and SPC-L contributed to the effects of SPC on the DSS-induced increases in monolayer permeability (Fig. 2b). Blocking the thiol/s in SPC by pretreatment with NEM reduced the ability of SPC to mitigate DSS-induced permeability by 52% compared to unblocked SPC (Fig. 2c). By contrast, pre-oxidation of SPC with H2O2 had no significant effect on the monolayer protective effects of SPC. Treatment of HSPC with either NEM or H2O2 had no effect on the mitigation of DSS-induced permeability by HSPC (Fig. 2d).

3.3. Gross markers of colitis in DSS-treated mice

DSS-treated mice had significantly lower body weight than water-treated controls on days 8 and 9 of the experiment (Fig. 3). This reduction in body weight was prevented by replacing 6 or 12% of the dietary protein with SPC (Fig. 3). The mean body weight of SPC-treated DSS-treated mice was not significantly different from the water-treated controls on day 9 of the experiment. Colon shortening and relative spleen weight were both observed in DSS-treated mice (Fig. 3). Dietary SPC had no statistically-significant effect on colon length, but 12% SPC did prevent DSS-induced increases in relative spleen weight (Fig. 3).

3.4. Markers of colonic inflammation in DSS-treated mice

Colonic protein expression of IL-1β, IL-6 and MCP-1 were significantly increased in DSS-treated mice (Fig. 4). The increases in IL-1β, IL-6 and MCP-1 protein were mitigated by supplementation with 12% dietary SPC. At the mRNA level, colonic Il1b, epithelial growth factor-like Module-containing Mucin-like Hormone Receptor-Like 1 (Emr1) and Tlr4 were increased by DSS (Fig. 4). DSS-induced increases in colonic Il1b and Tlr4 expression were blunted by dietary supplementation with 12% SPC (Fig. 4). No significant effect of SPC on DSS-induced increases in colonic Emr1 levels was observed (Fig. 4). Neither DSS nor SPC treatment had a significant effect on the colonic mRNA expression of Nfkb compared to untreated control mice (Fig. 4).

3.5. Markers of gut barrier function in DSS-treated mice.

Colonic GLP-2 protein levels were reduced by 57% in DSS-treated compared to negative control mice (Fig. 5). Dietary SPC prevented this loss in expression of GLP-2 in the colon. qPCR analysis showed no statistically significant differences in the mRNA expression of Claudin-1 (Cldn1), occludin (Ocln), or the ratio of Cldn:Ocln among the different treatment groups (Fig. 5).

3.6. Inflammasome formation and caspase-1 in DSS-treated mice

DSS-treatment increased colonic mRNA expression of Nlrp3, but had no significant effect on the expression of Tn mp and caspase-1 (Casp1), compared to negative control mice (Fig. 6). Mice co-treated with 6 and 12% SPC had significantly lower Nlrp3 mRNA levels compared to DSS-treated control mice. In contrast to Casp1 mRNA, caspase-1 enzyme activity in colon tissue was significantly increased by DSS treatment (Fig. 6). SPC-treated mice had significantly lower colonic caspase-1 activity than DSS-treated control mice.

4. Discussion

IBD represents a significant public health issue which reduces patient quality of life and increases colon cancer risk. The development of dietary strategies to mitigate IBD is therefore of considerable public health importance. Previous epidemiological studies have reported an inverse relationship between soy consumption and markers of...
inflammation and colon cancer; however, laboratory studies with purified soy components have yielded mixed results [15,16].

In the present study, we examined the radical scavenging and cytoprotective effects of SPC in vitro. Further, we examined the effect of dietary SPC on markers of colonic inflammation, gut barrier function, and the NLRP3 inflammasome in the DSS-treated mouse model of acute ulcerative colitis. Although previous studies have examined the anti-inflammatory effects of purified di- and tripeptides, as well as the Bowman-Birk protease inhibitor derived from soy, there have been limited studies on whole soy protein preparations and the potential underlying mechanisms of action [24,25].

SPC exhibited significant radical scavenging activity in the ORAC assay, and antioxidant and cytoprotective effects in cultured Caco-2 human colon cells. The antioxidant activities of soy protein observed here are consistent with previous reports in various food systems, which correlated radical scavenging activity with free thiol content (reviewed in [19]). We found that pre-oxidation of SPC with H2O2 and blocking free thiols in SPC with NEM abolished the radical scavenging activity.

![Biochemical markers of intestinal permeability in DSS-treated CF-1 mice](image-url)

Fig. 4. The effect of dietary SPC on markers of colon inflammation and gut permeability in DSS-treated CF-1 mice. Protein levels of IL-1β, IL-6, and MCP-1 were determined in the colon homogenate using commercially-available ELISAs and normalized to the total protein of each sample. Relative mRNA expression of Il1b, Emr1, Tlr4, and Nfkb in colon homogenate was determined by qPCR and normalized to the expression of GAPDH expression. All values represent the means±S.E.M. and different letters denote differences between groups. Asterisks indicate statistical significance using one-way ANOVA with a Tukey’s Multiple Comparison post-test. For IL-6 protein levels and Il1b and Emr1 mRNA levels, the data had unequal variance and Welch’s ANOVA with Dunnett’s post-test was used for statistical analysis. Asterisk represents P<.05 compared to DSS-treated control mice.

![Colon GLP-2 and Claudin-1 levels](image-url)

Fig. 5. Biochemical markers of intestinal permeability in DSS-treated CF-1 mice. GLP-2 protein levels in the colon homogenate as determined by ELISA and normalized to the total protein were determined by one-way ANOVA with a Tukey’s Multiple Comparison post-test. For Claudin-1 (Claudin1) and occludin (Ocln) in colon homogenate was determined by qPCR and normalized to the expression of GAPDH. The ratio of Claudin1 to Ocln was used as a marker of gut barrier function, with a decreased ratio representing compromised barrier function. All values represent the means±S.E.M. and an n=10 for each group. Different letters denote P<.05 using one-way ANOVA with a Tukey’s Multiple Comparison post-test. “ns”, not statistically significant.
activity in vitro. Similarly, hydrolysis of SPC with pepsin and pancreatin (HSPC) significantly reduced its radical scavenging activity. This change was related to a decrease in the free thiol content of the final protein preparation. In addition to these antioxidant-related effects, we observed that both SPC and HSPC blunted DSS-induced increases in the permeability of Caco-2 cell monolayers. In contrast to the radical scavenging and antioxidant activity of SPC, the effects on gut barrier function were only partially modulated by pre-oxidation of SPC with H2O2 or by blocking the free thiols in SPC with NEM. Treatment of HSPC with H2O2 and NEM had no effect on the protective activity of HSPC.

These in vitro results were unexpected since our initial hypothesis was that SPC exerted its monolayer protective effects via an antioxidant mechanism, and our results indicate that these two biological effects may result from different underlying mechanisms of action or from different components within soy protein. Previous studies have suggested that anti-inflammatory effects of specific peptides in soy protein [25]. The underlying mechanism of action of these peptides remains unclear, and we do not know the extent to which these peptides contribute to the anti-inflammatory effects of SPC, but future studies in this direction seem likely to be fruitful.

It is especially interesting and relevant that HSPC, which is prepared by proteolytic cleavage with pepsin and pancreatin, maintains its monolayer protective effects. Since this proteolytic digestion mimics what happens in vivo, we hypothesize that HSPC represents the material that reaches the colon more closely than SPC. Its in vitro biological activity is therefore more relevant to the in vivo situation. Further studies should focus on characterizing HSPC and exploring the anti-inflammatory effects of HSPC.

In vivo, we found that dietary SPC, at the 12% dose-level, ameliorated DSS-mediated body weight loss and splenomegaly. SPC also mitigated DSS-induced increases in protein markers of inflammation (IL-1β, IL-6, and MCP-1) and related gene expression (Nlrp3 and Tlr4). Colonic inflammation leads to reorganization of the tight junction proteins and loss of gut barrier function allowing intestinal microbiota and microbiota-derived components into the intestinal submucosa and into the systemic circulation. These effects have been linked to IL-1β-induced Nfkb activation [8,9]. We observed here that SPC prevented DSS-induced decreases in colonic GLP-2 levels, indicating that SPC mitigated DSS-induced loss of gut barrier function [31–33]. By contrast, we observed no significant difference in Cldn1, Ocln, or the ratio of these two genes among the treatment groups. Although these results are inconsistent with what is expected based on the observed changes in GLP-2, it is worth noting that inflammation in the colon has been reported to lead to relocation of claudin 1 and occludin protein from the plasma membrane to the interior of the cell [8,9]. This in turn leads to decreased tight-junction formation and compromised gut barrier function. We did not examine the protein expression or localization of claudin-1 and occludin, so it is possible that DSS and SPC treatment effects occur at the protein level. Further studies are needed to more directly examine changes in gut barrier function, including changes in the localization of tight junction proteins or the systemic availability of gut-derived bacterial endotoxin.

The underlying anti-inflammatory mechanisms of soy protein are unclear. IL-1β is an important cytokine in the IBD-associated inflammation, and in the present study we found that SPC supplementation blunted DSS-induced increases in both mRNA and protein expression of IL-1β. IL-1β is synthesized as an inactive protein precursor that is activated primarily by caspase-1-mediated proteolysis [34]. Here, we found that caspase-1 activity is elevated in DSS-treated mice, and that this increase was prevented by SPC supplementation. These results suggest that SPC may prevent proteolytic activation of pro-IL-1β.

Activation of caspase-1 occurs through the action of a multi-protein complex known as the NLRP3-inflammasome. This complex is formed by NLRP3 and ASC in response to ROS-induced association of TXNIP and NLRP3 [35]. TLR4-induced Nfkb activation regulates the expression of both NLRP3 and pro-IL-1β expression, and plays a key role in innate immune response and is elevated in experimental models of IBD [36–38]. We found that mRNA levels of Tlr4 were elevated in DSS-treated mice and that these increases were prevented in SPC-supplemented mice. Further, we found that SPC prevented DSS-induced increases in Nlrp3 expression. By contrast, neither DSS treatment nor co-treatment with SPC had a significant effect on Nfkbeta mRNA expression. Although we were surprised by the lack of effect of DSS on Nfkbeta expression, we recognize that effects mediated by Nfkb are due to nuclear translocation of the p65 subunit. Therefore, a lack of change in Nfkbeta expression may not indicate a lack of change in Nfkb signaling. In the present study, we did not examine Nfkb protein levels or subcellular location. While this represents a limitation to the present studies, we did observe changes in Nfkb-responsive genes including IL-1β, IL-6, and MCP-1. This suggests that modulation of Nfkb signaling may play a role in the observed effects of caspase-1 activity and the anti-inflammatory effects of SPC. Further studies are needed, however, to fully investigate the effects of SPC on the components of TLR4-Nfkb-NLRP3 inflammasome pathway at the level of protein expression and activity.

The observed changes in inflammatory markers in vivo correlate well with what would be predicted by the in vitro monolayer protective effects of SPC and HSPC. Breakdown of the gut epithelial barrier results in the movement of bacterial components from the lumen of the colon to the basolateral space, allowing greater activation of TLR4/Nfkb signaling, and increased expression of pro-inflammatory cytokines including IL-6 and IL-1β, as well as components of the NLRP3 inflammasome [39,40]. By preventing gut barrier integrity, SPC is able to prevent this increase in pro-inflammatory signaling and moderate the severity of colitis. Additional studies are needed to fully translate
the results of our in vitro studies to the in vivo situation, but overall these results indicate that SPC may exert its anti-inflammatory effects in part by targeting components of TLR4/NF-κB signaling pathway and the NLRP3 inflammusome, and that these effects are related in part to the monolayer protective effects of SPC.

The present study has two limitations which must be highlighted. First, we group-housed mice and were not able to collect precise food consumption data, therefore, we are unable to comment on the impact of SPC on the palatability of the diet or on food intake by the mice. Second, we did not examine protein expression for all of the molecular markers that were examined at the mRNA level. As such, the changes observed in Tlr4 and Nlrp3 and the lack of change observed in Nfkb and Tnip may not correlate to similar effects at the protein level. In the present study we did not have sufficient tissue samples to examine these protein markers. Since we did observe changes in colonic caspase-1 activity (which is activated by NLRP3), and the expression of NF-κB target proteins (e.g. IL-6, IL-1β) induced by DSS and SPC, we have some confidence that we will see changes in the expression of NLRP3 inflammasome-related proteins and the localization of NF-κB.

Overall, the findings of our study support the efficacy of dietary SPC as a means of preventing colonic inflammation and loss of gut barrier function. These effects appear to result from mitigation of TLR4-mediated NLRP3 inflammasome formation and activity. Future studies will focus on identification of the active anti-inflammatory principles in soy protein, confirmation of the proposed mechanisms of action, and the potential efficacy of SPC as a means to prevent inflammation-associated colon cancer.

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.jnutbio.2016.11.012.

Acknowledgements

The authors wish to thank Yeyi Gu, Sudathip Sae-tan, Deepti Dabas, and Kimberly A. Grove for technical assistance. The authors acknowledge technical assistance and primer synthesis services provided by the Penn State Genomics Core Facility, University Park, PA, USA.

References

[5] Davis BK, Philipson C, Hontecillas R, Eden K, Bassaganya-Riera J, Allen IC. Emerging evidence technical assistance and primer synthesis services provided by the Penn State Genomics Core Facility, University Park, PA, USA.
[10] Davis BK, Philipson C, Hontecillas R, Eden K, Bassaganya-Riera J, Allen IC. Emerging evidence technical assistance and primer synthesis services provided by the Penn State Genomics Core Facility, University Park, PA, USA.

The authors wish to thank Yeyi Gu, Sudathip Sae-tan, Deepti Dabas, and Kimberly A. Grove for technical assistance. The authors acknowledge technical assistance and primer synthesis services provided by the Penn State Genomics Core Facility, University Park, PA, USA.